Splines, lattice points, and arithmetic matroids
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 277-324.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $X$ be a $(d\times N)$-matrix. We consider the variable polytope $\varPi_X(u) = \{ w \ge 0 : X w = u \}$. It is known that the function $T_X$ that assigns to a parameter $u \in \mathbb {R}^d$ the volume of the polytope $\varPi _X(u)$ is piecewise polynomial. The Brion-Vergne formula implies that the number of lattice points in $\varPi_X(u)$ can be obtained by applying a certain differential operator to the function $T_X$. In this article, we slightly improve the Brion-Vergne formula and we study two spaces of differential operators that arise in this context: the space of relevant differential operators (i.e. operators that do not annihilate $T_X$) and the space of nice differential operators (i.e. operators that leave $T_X$ continuous). These two spaces are finite-dimensional homogeneous vector spaces, and their Hilbert series are evaluations of the Tutte polynomial of the arithmetic matroid defined by the matrix $X$. They are closely related to the $\mathscr {P}$-spaces studied by F. Ardila and A. Postnikov [Trans. Am. Math. Soc. 362, No. 8, 4357--4384 (2010); corrigendum ibid. 367, No. 5, 3759--3762 (2015; Zbl 1226.05019)] and O. Holtz and A. Ron [Adv. Math. 227, No. 2, 847--894 (2011; Zbl 1223.13010)] in the context of zonotopal algebra and power ideals.
Classification : 05B35, 19L10, 52B20, 13B25, 14M25, 16S32, 41A15, 47F05, 52B40, 52C35
Keywords: lattice polytope, vector partition function, Todd operator, Brion-Vergne formula, arithmetic matroid, zonotopal algebra
@article{JAC_2016__43_2_a7,
     author = {Lenz, Matthias},
     title = {Splines, lattice points, and arithmetic matroids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {277--324},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a7/}
}
TY  - JOUR
AU  - Lenz, Matthias
TI  - Splines, lattice points, and arithmetic matroids
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 277
EP  - 324
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a7/
LA  - en
ID  - JAC_2016__43_2_a7
ER  - 
%0 Journal Article
%A Lenz, Matthias
%T Splines, lattice points, and arithmetic matroids
%J Journal of Algebraic Combinatorics
%D 2016
%P 277-324
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a7/
%G en
%F JAC_2016__43_2_a7
Lenz, Matthias. Splines, lattice points, and arithmetic matroids. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 277-324. http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a7/