A characterization of triangle-free Gorenstein graphs and Cohen-Macaulayness of second powers of edge ideals
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 325-338.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We graph-theoretically characterize triangle-free Gorenstein graphs $G$. As an application, we classify when $I(G)^2$ is Cohen-Macaulay.
Classification : 05E40, 05E45, 05C50, 13C14
Keywords: triangle-free, well-covered, edge ideal, Cohen-Macaulay
@article{JAC_2016__43_2_a6,
     author = {Hoang, Do Trong and Trung, Tran Nam},
     title = {A characterization of triangle-free {Gorenstein} graphs and {Cohen-Macaulayness} of second powers of edge ideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {325--338},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a6/}
}
TY  - JOUR
AU  - Hoang, Do Trong
AU  - Trung, Tran Nam
TI  - A characterization of triangle-free Gorenstein graphs and Cohen-Macaulayness of second powers of edge ideals
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 325
EP  - 338
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a6/
LA  - en
ID  - JAC_2016__43_2_a6
ER  - 
%0 Journal Article
%A Hoang, Do Trong
%A Trung, Tran Nam
%T A characterization of triangle-free Gorenstein graphs and Cohen-Macaulayness of second powers of edge ideals
%J Journal of Algebraic Combinatorics
%D 2016
%P 325-338
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a6/
%G en
%F JAC_2016__43_2_a6
Hoang, Do Trong; Trung, Tran Nam. A characterization of triangle-free Gorenstein graphs and Cohen-Macaulayness of second powers of edge ideals. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 325-338. http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a6/