An Erdős-Ko-Rado theorem for finite classical polar spaces
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 375-397.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Consider a finite classical polar space of rank $d\ge 2$ and an integer $n$ with $0$. In this paper, it is proved that the set consisting of all subspaces of rank $n$ that contain a given point is a largest Erdős-Ko-Rado set of subspaces of rank $n$ of the polar space. We also show that there are no other Erdős-Ko-Rado sets of subspaces of rank $n$ of the same size.
Classification : 05B25, 05E30, 51A50
Keywords: polar space, Erdős-Ko-Rado set, weighted Hoffman's bound
@article{JAC_2016__43_2_a4,
     author = {Metsch, Klaus},
     title = {An {Erd\H{o}s-Ko-Rado} theorem for finite classical polar spaces},
     journal = {Journal of Algebraic Combinatorics},
     pages = {375--397},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a4/}
}
TY  - JOUR
AU  - Metsch, Klaus
TI  - An Erdős-Ko-Rado theorem for finite classical polar spaces
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 375
EP  - 397
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a4/
LA  - en
ID  - JAC_2016__43_2_a4
ER  - 
%0 Journal Article
%A Metsch, Klaus
%T An Erdős-Ko-Rado theorem for finite classical polar spaces
%J Journal of Algebraic Combinatorics
%D 2016
%P 375-397
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a4/
%G en
%F JAC_2016__43_2_a4
Metsch, Klaus. An Erdős-Ko-Rado theorem for finite classical polar spaces. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 2, pp. 375-397. http://geodesic.mathdoc.fr/item/JAC_2016__43_2_a4/