Intersection cohomology of the symmetric reciprocal plane
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 129-138.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We compute the Kazhdan-Lusztig polynomial of the uniform matroid of rank $n-1$ on $n$ elements by proving that the coefficient of $t^i$ is equal to the number of ways to choose $i$ non-intersecting chords in an $(n-i+1)$-gon. We also show that the corresponding intersection cohomology group is isomorphic to the irreducible representation of $S_n$ associated with the partition $[n-2i,2,\dots,2]$.
Classification : 05E15, 05E10, 05B35
Keywords: intersection cohomology, reciprocal plane, Kazhdan-Lusztig polynomial, matroid
@article{JAC_2016__43_1_a5,
     author = {Proudfoot, Nicholas and Wakefield, Max and Young, Ben},
     title = {Intersection cohomology of the symmetric reciprocal plane},
     journal = {Journal of Algebraic Combinatorics},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a5/}
}
TY  - JOUR
AU  - Proudfoot, Nicholas
AU  - Wakefield, Max
AU  - Young, Ben
TI  - Intersection cohomology of the symmetric reciprocal plane
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 129
EP  - 138
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a5/
LA  - en
ID  - JAC_2016__43_1_a5
ER  - 
%0 Journal Article
%A Proudfoot, Nicholas
%A Wakefield, Max
%A Young, Ben
%T Intersection cohomology of the symmetric reciprocal plane
%J Journal of Algebraic Combinatorics
%D 2016
%P 129-138
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a5/
%G en
%F JAC_2016__43_1_a5
Proudfoot, Nicholas; Wakefield, Max; Young, Ben. Intersection cohomology of the symmetric reciprocal plane. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 129-138. http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a5/