$G(\ell,k,d)$-modules via groupoids
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 11-32.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this note, we describe a seemingly new approach to the complex representation theory of the wreath product $G\wr S_d$, where $G$ is a finite abelian group. The approach is motivated by an appropriate version of Schur-Weyl duality. We construct a combinatorially defined groupoid in which all endomorphism algebras are direct products of symmetric groups and prove that the groupoid algebra is isomorphic to the group algebra of $G\wr S_d$. This directly implies a classification of simple modules. As an application, we get a Gelfand model for $G\wr S_d$ from the classical involutive Gelfand model for the symmetric group. We describe the Schur-Weyl duality which motivates our approach and relate it to various Schur-Weyl dualities in the literature. Finally, we discuss an extension of these methods to all complex reflection groups of type $G(\ell,k,d)$.
Classification : 05E10
Keywords: Schur-Weyl duality, wreath product, simple module, groupoid
@article{JAC_2016__43_1_a10,
     author = {Mazorchuk, Volodymyr and Stroppel, Catharina},
     title = {$G(\ell,k,d)$-modules via groupoids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {11--32},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a10/}
}
TY  - JOUR
AU  - Mazorchuk, Volodymyr
AU  - Stroppel, Catharina
TI  - $G(\ell,k,d)$-modules via groupoids
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 11
EP  - 32
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a10/
LA  - en
ID  - JAC_2016__43_1_a10
ER  - 
%0 Journal Article
%A Mazorchuk, Volodymyr
%A Stroppel, Catharina
%T $G(\ell,k,d)$-modules via groupoids
%J Journal of Algebraic Combinatorics
%D 2016
%P 11-32
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a10/
%G en
%F JAC_2016__43_1_a10
Mazorchuk, Volodymyr; Stroppel, Catharina. $G(\ell,k,d)$-modules via groupoids. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 11-32. http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a10/