$W$-graph ideals and biideals
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 237-275.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We further develop the theory of $W$-graph ideals, first introduced in R. B. Howlett and V. M. Nguyen [J. Algebra 361, 188--212 (2012; Zbl 1271.20002)]. We discuss $W$-graph subideals, and induction and restriction of $W$-graph ideals for parabolic subgroups. We introduce $W$-graph biideals: those $W$-graph ideals that yield $(W\times W^{\mathrm{o}})$-graphs, where $W^{\mathrm{o}}$ is the group opposite to $W$. We determine all $W$-graph ideals and biideals in finite Coxeter groups of rank 2.
Classification : 05E10, 05C25, 20F55, 20C08
Keywords: Coxeter groups, Hecke algebras, $W$-graphs, Kazhdan-Lusztig polynomials, cells
@article{JAC_2016__43_1_a0,
     author = {Howlett, Robert B. and Nguyen, Van Minh},
     title = {$W$-graph ideals and biideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {237--275},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a0/}
}
TY  - JOUR
AU  - Howlett, Robert B.
AU  - Nguyen, Van Minh
TI  - $W$-graph ideals and biideals
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 237
EP  - 275
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a0/
LA  - en
ID  - JAC_2016__43_1_a0
ER  - 
%0 Journal Article
%A Howlett, Robert B.
%A Nguyen, Van Minh
%T $W$-graph ideals and biideals
%J Journal of Algebraic Combinatorics
%D 2016
%P 237-275
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a0/
%G en
%F JAC_2016__43_1_a0
Howlett, Robert B.; Nguyen, Van Minh. $W$-graph ideals and biideals. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 1, pp. 237-275. http://geodesic.mathdoc.fr/item/JAC_2016__43_1_a0/