Combinatorics of tropical Hurwitz cycles
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 1027-1058.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study properties of the tropical double Hurwitz loci defined by Bertram, Cavalieri and Markwig. We show that all such loci are connected in codimension one. If we mark preimages of simple ramification points, then for a generic choice of such points, the resulting cycles are weakly irreducible, i.e. an integer multiple of an irreducible cycle. We study how Hurwitz cycles can be written as divisors of rational functions and show that they are numerically equivalent to a tropical version of a representation as a sum of boundary divisors. The results and counterexamples in this paper were obtained with the help of a-tint, an extension for polymake for tropical intersection theory.
Classification : 14T05
Keywords: double Hurwitz numbers, tropical Hurwitz cycle
@article{JAC_2015__42_4_a5,
     author = {Hampe, Simon},
     title = {Combinatorics of tropical {Hurwitz} cycles},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1027--1058},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a5/}
}
TY  - JOUR
AU  - Hampe, Simon
TI  - Combinatorics of tropical Hurwitz cycles
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1027
EP  - 1058
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a5/
LA  - en
ID  - JAC_2015__42_4_a5
ER  - 
%0 Journal Article
%A Hampe, Simon
%T Combinatorics of tropical Hurwitz cycles
%J Journal of Algebraic Combinatorics
%D 2015
%P 1027-1058
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a5/
%G en
%F JAC_2015__42_4_a5
Hampe, Simon. Combinatorics of tropical Hurwitz cycles. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 1027-1058. http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a5/