Regularity of powers of forests and cycles
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 1077-1095.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a graph and let $I = I(G)$ be its edge ideal. In this paper, when $G$ is a forest or a cycle, we explicitly compute the regularity of $I^s$ for all $s \ge 1$. In particular, for these classes of graphs, we provide the asymptotic linear function ${\mathrm{reg}}(I^s)$ as $s \gg 0$, and the initial value of $s$ starting from which ${\mathrm{reg}}(I^s)$ attains its linear form. We also give new bounds on the regularity of $I$ when $G$ contains a Hamiltonian path and when $G$ is a Hamiltonian graph.
Classification : 13D45, 05C38
Keywords: regularity, powers of ideal, edge ideal
@article{JAC_2015__42_4_a3,
     author = {Beyarslan, Selvi and H\`a, Huy T\`ai and Trung, Tr\^an Nam},
     title = {Regularity of powers of forests and cycles},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1077--1095},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a3/}
}
TY  - JOUR
AU  - Beyarslan, Selvi
AU  - Hà, Huy Tài
AU  - Trung, Trân Nam
TI  - Regularity of powers of forests and cycles
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1077
EP  - 1095
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a3/
LA  - en
ID  - JAC_2015__42_4_a3
ER  - 
%0 Journal Article
%A Beyarslan, Selvi
%A Hà, Huy Tài
%A Trung, Trân Nam
%T Regularity of powers of forests and cycles
%J Journal of Algebraic Combinatorics
%D 2015
%P 1077-1095
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a3/
%G en
%F JAC_2015__42_4_a3
Beyarslan, Selvi; Hà, Huy Tài; Trung, Trân Nam. Regularity of powers of forests and cycles. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 1077-1095. http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a3/