Finite soluble groups satisfying the swap conjecture.
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 907-915.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a $d$-generated finite group $G$, we consider the graph $\Delta_d(G)$ (swap graph) in which the vertices are the ordered generating $d$-tuples and in which two vertices $(x_1,... ,x_d)$ and $(y_1,... ,y_d)$ are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that $\Delta_d(G)$ is a connected graph. We prove that this conjecture is true if $G$ is a soluble group satisfying some extra conditions, for example if the derived subgroup of $G$ has odd order or is nilpotent.
Classification : 20D10, 20F05, 05C25
Keywords: generating graphs, swap conjecture, finite soluble groups, numbers of generators, graphs of generating tuples, connected graphs
@article{JAC_2015__42_4_a10,
     author = {Lucchini, Andrea},
     title = {Finite soluble groups satisfying the swap conjecture.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {907--915},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a10/}
}
TY  - JOUR
AU  - Lucchini, Andrea
TI  - Finite soluble groups satisfying the swap conjecture.
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 907
EP  - 915
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a10/
LA  - en
ID  - JAC_2015__42_4_a10
ER  - 
%0 Journal Article
%A Lucchini, Andrea
%T Finite soluble groups satisfying the swap conjecture.
%J Journal of Algebraic Combinatorics
%D 2015
%P 907-915
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a10/
%G en
%F JAC_2015__42_4_a10
Lucchini, Andrea. Finite soluble groups satisfying the swap conjecture.. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 4, pp. 907-915. http://geodesic.mathdoc.fr/item/JAC_2015__42_4_a10/