Automorphism group of the complete transposition graph
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 793-801.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The complete transposition graph is defined to be the graph whose vertices are the elements of the symmetric group $S_n$, and two vertices $\alpha$ and $\beta$ are adjacent in this graph iff there is some transposition $(i,j)$ such that $\alpha=(i,j)\beta$. Thus, the complete transposition graph is the Cayley graph $\mathrm{Cay}(S_n,S)$ of the symmetric group generated by the set $S$ of all transpositions. An open problem in the literature is to determine which Cayley graphs are normal. It was shown recently that the Cayley graph generated by four cyclically adjacent transpositions is non-normal. In the present paper, it is proved that the complete transposition graph is not a normal Cayley graph, for all $n\geq 3$. Furthermore, the automorphism group of the complete transposition graph is shown to equal $$\mathrm{Aut}(\mathrm{Cay}(S_n,S))=(R(S_n)\rtimes\mathrm{Inn}(S_n))\rtimes\mathbb Z_2,$$ where $R(S_n)$ is the right regular representation of $S_n$, $\mathrm{Inn}(S_n)$ is the group of inner automorphisms of $S_n$, and $\mathbb Z_2=\langle h\rangle$, where $h$ is the map $\alpha\mapsto\alpha^{-1}$.
Classification : 05C25, 05C60, 20B30
Keywords: complete transposition graph, automorphisms of graphs, normal Cayley graphs
@article{JAC_2015__42_3_a5,
     author = {Ganesan, Ashwin},
     title = {Automorphism group of the complete transposition graph},
     journal = {Journal of Algebraic Combinatorics},
     pages = {793--801},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a5/}
}
TY  - JOUR
AU  - Ganesan, Ashwin
TI  - Automorphism group of the complete transposition graph
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 793
EP  - 801
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a5/
LA  - en
ID  - JAC_2015__42_3_a5
ER  - 
%0 Journal Article
%A Ganesan, Ashwin
%T Automorphism group of the complete transposition graph
%J Journal of Algebraic Combinatorics
%D 2015
%P 793-801
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a5/
%G en
%F JAC_2015__42_3_a5
Ganesan, Ashwin. Automorphism group of the complete transposition graph. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 793-801. http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a5/