Normal edge-transitive Cayley graphs of Frobenius groups
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 803-827.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A Cayley graph for a group $G$ is called normal edge-transitive if it admits an edge-transitive action of some subgroup of the holomorph of $G$ [the normaliser of a regular copy of $G$ in $\mathrm{Sym}(G)]$. We complete the classification of normal edge-transitive Cayley graphs of order a product of two primes by dealing with Cayley graphs for Frobenius groups of such orders. We determine the automorphism groups of these graphs, proving in particular that there is a unique vertex-primitive example, namely the flag graph of the Fano plane.
Classification : 05C25, 20D10
Keywords: Cayley graphs, group theory, algebraic graph theory, Frobenius groups
@article{JAC_2015__42_3_a4,
     author = {Corr, Brian P. and Praeger, Cheryl E.},
     title = {Normal edge-transitive {Cayley} graphs of {Frobenius} groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {803--827},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a4/}
}
TY  - JOUR
AU  - Corr, Brian P.
AU  - Praeger, Cheryl E.
TI  - Normal edge-transitive Cayley graphs of Frobenius groups
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 803
EP  - 827
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a4/
LA  - en
ID  - JAC_2015__42_3_a4
ER  - 
%0 Journal Article
%A Corr, Brian P.
%A Praeger, Cheryl E.
%T Normal edge-transitive Cayley graphs of Frobenius groups
%J Journal of Algebraic Combinatorics
%D 2015
%P 803-827
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a4/
%G en
%F JAC_2015__42_3_a4
Corr, Brian P.; Praeger, Cheryl E. Normal edge-transitive Cayley graphs of Frobenius groups. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 803-827. http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a4/