A lower bound for depths of powers of edge ideals
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 829-848.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a graph, and let $I$ be the edge ideal of $G$. Our main results in this article provide lower bounds for the depth of the first three powers of $I$ in terms of the diameter of $G$. More precisely, we show that depth $R/I^t\geq\left\lceil\frac{d-4t+5}{3}\right\rceil+p-1$, where $d$ is the diameter of $G$ and $p$ is the number of connected components of $G$ and $1\leq t\leq 3$. For general powers of edge ideals we show that depth $R/I^t\geq p-t$. As an application of our results we obtain the corresponding lower bounds for the Stanley depth of the first three powers of $I$.
Classification : 05E40
Keywords: depth, Stanley depth, edge ideals
@article{JAC_2015__42_3_a3,
     author = {Fouli, Louiza and Morey, Susan},
     title = {A lower bound for depths of powers of edge ideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {829--848},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a3/}
}
TY  - JOUR
AU  - Fouli, Louiza
AU  - Morey, Susan
TI  - A lower bound for depths of powers of edge ideals
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 829
EP  - 848
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a3/
LA  - en
ID  - JAC_2015__42_3_a3
ER  - 
%0 Journal Article
%A Fouli, Louiza
%A Morey, Susan
%T A lower bound for depths of powers of edge ideals
%J Journal of Algebraic Combinatorics
%D 2015
%P 829-848
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a3/
%G en
%F JAC_2015__42_3_a3
Fouli, Louiza; Morey, Susan. A lower bound for depths of powers of edge ideals. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 829-848. http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a3/