Low-degree planar monomials in characteristic two
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 695-699.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Planar functions over finite fields give rise to finite projective planes and other combinatorial objects. They exist only in odd characteristic, but recently Zhou introduced an even characteristic analogue which has similar applications. In this paper we determine all planar functions on $\mathbb F_q$ of the form $c\mapsto ac^t$, where $q$ is a power of $2$, $t$ is an integer with $0$, and $a\in\mathbb F_q^\ast$. This settles and sharpens a conjecture of Schmidt and Zhou.
Classification : 51E20, 11T06, 11T71, 05B05
Keywords: planar function, projective plane, monomial functions
@article{JAC_2015__42_3_a10,
     author = {M\"uller, Peter and Zieve, Michael E.},
     title = {Low-degree planar monomials in characteristic two},
     journal = {Journal of Algebraic Combinatorics},
     pages = {695--699},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a10/}
}
TY  - JOUR
AU  - Müller, Peter
AU  - Zieve, Michael E.
TI  - Low-degree planar monomials in characteristic two
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 695
EP  - 699
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a10/
LA  - en
ID  - JAC_2015__42_3_a10
ER  - 
%0 Journal Article
%A Müller, Peter
%A Zieve, Michael E.
%T Low-degree planar monomials in characteristic two
%J Journal of Algebraic Combinatorics
%D 2015
%P 695-699
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a10/
%G en
%F JAC_2015__42_3_a10
Müller, Peter; Zieve, Michael E. Low-degree planar monomials in characteristic two. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 3, pp. 695-699. http://geodesic.mathdoc.fr/item/JAC_2015__42_3_a10/