Quasi-cluster algebras from non-orientable surfaces
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 429-472.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

With any non-necessarily orientable unpunctured marked surface $(\mathbf{S,M})$, we associate a commutative algebra $\mathcal A_{(\mathbf{S,M})}$, called quasi-cluster algebra, equipped with a distinguished set of generators, called quasi-cluster variables, in bijection with the set of arcs and one-sided simple closed curves in $(\mathbf{S,M})$. Quasi-cluster variables are naturally gathered into possibly overlapping sets of fixed cardinality, called quasi-clusters, corresponding to maximal non-intersecting families of arcs and one-sided simple closed curves in $(\mathbf{S,M})$. If the surface $\mathbf S$ is orientable, then $\mathcal A_{(\mathbf{S,M})}$ is the cluster algebra associated with the marked surface $(\mathbf{S,M})$ in the sense of S. Fomin et al. [Acta Math. 201, No. 1, 83--146 (2008; Zbl 1263.13023)]. We classify quasi-cluster algebras with finitely many quasi-cluster variables and prove that for these quasi-cluster algebras, quasi-cluster monomials form a linear basis. Finally, we attach to $(\mathbf{S,M})$ a family of discrete integrable systems satisfied by quasi-cluster variables associated to arcs in $\mathcal A_{(\mathbf{S,M})}$ and we prove that solutions of these systems can be expressed in terms of cluster variables of type $A$.
Classification : 13F60, 16G70, 53A35
Keywords: cluster algebra, triangulations, hyperbolic geometry, non-orientable surfaces
@article{JAC_2015__42_2_a8,
     author = {Dupont, Gr\'egoire and Palesi, Fr\'ed\'eric},
     title = {Quasi-cluster algebras from non-orientable surfaces},
     journal = {Journal of Algebraic Combinatorics},
     pages = {429--472},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a8/}
}
TY  - JOUR
AU  - Dupont, Grégoire
AU  - Palesi, Frédéric
TI  - Quasi-cluster algebras from non-orientable surfaces
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 429
EP  - 472
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a8/
LA  - en
ID  - JAC_2015__42_2_a8
ER  - 
%0 Journal Article
%A Dupont, Grégoire
%A Palesi, Frédéric
%T Quasi-cluster algebras from non-orientable surfaces
%J Journal of Algebraic Combinatorics
%D 2015
%P 429-472
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a8/
%G en
%F JAC_2015__42_2_a8
Dupont, Grégoire; Palesi, Frédéric. Quasi-cluster algebras from non-orientable surfaces. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 429-472. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a8/