Nearfield planes and the direction problem in $\mAthrm{aG}(2,q^2)$
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 497-505.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the projective triangle of $\mathrm{PG}(2,q^2)$, $q$ odd, defines via indicator sets a regular nearfield spread of $\mathrm{PG}(3,q)$, and conversely one of the indicator sets of such a spread is the projective triangle. Then we rephrase our results in the framework of the direction problem. Recall that if $U$ is a set of $s$ points in $\mathrm{AG}(2,s)$ and $N$ is the number of the determined directions, when $s=p^2$ with $p$ an odd prime, Gács, Lovász and Szonyi have proved that for $N=\frac{p^2+3}{2}$ there is a unique example and $U$ is affinely equivalent to the graph of the function $x\mapsto x^{\frac{p^2+1}{2}}$. Here we prove a similar result for $s=q^2$, $q$ any odd prime power, assuming some extra hypotheses.
Classification : 51A40, 51E21
Keywords: nearfield planes, indicator sets, projective triangle, Rédei blocking sets, Baer sublines
@article{JAC_2015__42_2_a6,
     author = {Bader, Laura and Lunardon, Guglielmo},
     title = {Nearfield planes and the direction problem in $\mAthrm{aG}(2,q^2)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {497--505},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a6/}
}
TY  - JOUR
AU  - Bader, Laura
AU  - Lunardon, Guglielmo
TI  - Nearfield planes and the direction problem in $\mAthrm{aG}(2,q^2)$
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 497
EP  - 505
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a6/
LA  - en
ID  - JAC_2015__42_2_a6
ER  - 
%0 Journal Article
%A Bader, Laura
%A Lunardon, Guglielmo
%T Nearfield planes and the direction problem in $\mAthrm{aG}(2,q^2)$
%J Journal of Algebraic Combinatorics
%D 2015
%P 497-505
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a6/
%G en
%F JAC_2015__42_2_a6
Bader, Laura; Lunardon, Guglielmo. Nearfield planes and the direction problem in $\mAthrm{aG}(2,q^2)$. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 497-505. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a6/