Stanley depth and simplicial spanning trees
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 507-536.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that for proving the Stanley conjecture, it is sufficient to consider a very special class of monomial ideals. These ideals (or rather their lcm lattices) are in bijection with the simplicial spanning trees of skeletons of a simplex. We apply this result to verify the Stanley conjecture for quotients of monomial ideals with up to six generators. For seven generators, we obtain a partial result.
Classification : 05E40, 05C05, 13D02, 55U10
Keywords: monomial ideal, LCM lattice, Stanley depth, Stanley conjecture
@article{JAC_2015__42_2_a5,
     author = {Katth\"an, Lukas},
     title = {Stanley depth and simplicial spanning trees},
     journal = {Journal of Algebraic Combinatorics},
     pages = {507--536},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a5/}
}
TY  - JOUR
AU  - Katthän, Lukas
TI  - Stanley depth and simplicial spanning trees
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 507
EP  - 536
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a5/
LA  - en
ID  - JAC_2015__42_2_a5
ER  - 
%0 Journal Article
%A Katthän, Lukas
%T Stanley depth and simplicial spanning trees
%J Journal of Algebraic Combinatorics
%D 2015
%P 507-536
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a5/
%G en
%F JAC_2015__42_2_a5
Katthän, Lukas. Stanley depth and simplicial spanning trees. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 507-536. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a5/