Groups that are transitive on all partitions of a given shape
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 605-617.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $[n] = K_1\dot{\cup }K_2 \dot{\cup }\cdots \dot{\cup }K_r$ be a partition of $[n] = \{1,2,\dots ,n\}$ and set $\ell _i = |K_i|$ for $1\le i\le r$. Then the tuple $P = \{K_1,K_2,\dots,K_r\}$ is an unordered partition of $[n]$ of shape $[\ell _1,\dots,\ell _r]$. Let ${{\mathcal {P}}}$ be the set of all partitions of $[n]$ of shape $[\ell _1,\dots,\ell _r]$. Given a fixed shape $[\ell _1,\dots ,\ell _r]$, we determine all subgroups $G\le S_n$ that are transitive on ${{\mathcal {P}}}$ in the following sense: Whenever $P = \{K_1,\dots ,K_r\}$ and $P^\prime= \{K_1^\prime,\dots,K_r^\prime\}$ are partitions of $[n]$ of shape $[\ell _1,\dots,\ell _r]$, there exists $g\in G$ such that $g(P) = P^\prime$, that is, $\{g(K_1),\dots,g(K_r)\} = \{K_1^\prime,\dots,K_r^\prime\}$. Moreover, for an ordered shape, we determine all subgroups of $S_n$ that are transitive on the set of all ordered partitions of the given shape. That is, with $P$ and $P^\prime$ as above, $g(K_i) = K_i^\prime$ for $1\le i\le r$. As an application, we determine which Johnson graphs are Cayley graphs.
Classification : 05A17, 05C25, 20B30
Keywords: transitive group, ordered partition, unordered partition, Johnson graph, Cayley graph
@article{JAC_2015__42_2_a2,
     author = {Dobson, Edward and Malni\v{c}, Aleksander},
     title = {Groups that are transitive on all partitions of a given shape},
     journal = {Journal of Algebraic Combinatorics},
     pages = {605--617},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a2/}
}
TY  - JOUR
AU  - Dobson, Edward
AU  - Malnič, Aleksander
TI  - Groups that are transitive on all partitions of a given shape
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 605
EP  - 617
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a2/
LA  - en
ID  - JAC_2015__42_2_a2
ER  - 
%0 Journal Article
%A Dobson, Edward
%A Malnič, Aleksander
%T Groups that are transitive on all partitions of a given shape
%J Journal of Algebraic Combinatorics
%D 2015
%P 605-617
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a2/
%G en
%F JAC_2015__42_2_a2
Dobson, Edward; Malnič, Aleksander. Groups that are transitive on all partitions of a given shape. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 605-617. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a2/