Symmetric and nonsymmetric Koornwinder polynomials in the $q \to 0$ limit
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 331-364.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Koornwinder polynomials are a 6-parameter $BC_{n}$-symmetric family of Laurent polynomials indexed by partitions, from which Macdonald polynomials can be recovered in suitable limits of the parameters. As in the Macdonald polynomial case, standard constructions via difference operators do not allow one to directly control these polynomials at $q=0$. In the first part of this paper, we provide an explicit construction for these polynomials in this limit, using the defining properties of Koornwinder polynomials. Our formula is a first step in developing the analogy between Hall-Littlewood polynomials and Koornwinder polynomials at $q=0$. In the second part of the paper, we provide a construction for the nonsymmetric Koornwinder polynomials in the same limiting case; this parallels work by Descouens-Lascoux in type $A$. As an application, we prove an integral identity for Koornwinder polynomials at $q=0$.
Classification : 33D52, 33D45
Keywords: Koornwinder polynomials, orthogonal polynomials, symmetric functions, Macdonald polynomials
@article{JAC_2015__42_2_a11,
     author = {Venkateswaran, Vidya},
     title = {Symmetric and nonsymmetric {Koornwinder} polynomials in the $q \to 0$ limit},
     journal = {Journal of Algebraic Combinatorics},
     pages = {331--364},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a11/}
}
TY  - JOUR
AU  - Venkateswaran, Vidya
TI  - Symmetric and nonsymmetric Koornwinder polynomials in the $q \to 0$ limit
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 331
EP  - 364
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a11/
LA  - en
ID  - JAC_2015__42_2_a11
ER  - 
%0 Journal Article
%A Venkateswaran, Vidya
%T Symmetric and nonsymmetric Koornwinder polynomials in the $q \to 0$ limit
%J Journal of Algebraic Combinatorics
%D 2015
%P 331-364
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a11/
%G en
%F JAC_2015__42_2_a11
Venkateswaran, Vidya. Symmetric and nonsymmetric Koornwinder polynomials in the $q \to 0$ limit. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 331-364. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a11/