Arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 619-633.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Characterizing regular covers of edge-transitive or arc-transitive graphs is currently a hot topic in algebraic graph theory. In this paper, we will classify arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$ for each odd prime $p$. The classification consists of four infinite families of graphs. In particular, such covers exist for each odd prime $p$. The regular elementary abelian covers of $\mathsf{K}_{p,p}$ are considered in a sequel.
Classification : 05C25, 05C70, 20B15, 20B30
Keywords: arc-transitive graph, regular cover, complete bipartite graph, Cayley graph
@article{JAC_2015__42_2_a1,
     author = {Pan, Jiangmin and Huang, Zhaohong and Liu, Zhe},
     title = {Arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {619--633},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a1/}
}
TY  - JOUR
AU  - Pan, Jiangmin
AU  - Huang, Zhaohong
AU  - Liu, Zhe
TI  - Arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 619
EP  - 633
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a1/
LA  - en
ID  - JAC_2015__42_2_a1
ER  - 
%0 Journal Article
%A Pan, Jiangmin
%A Huang, Zhaohong
%A Liu, Zhe
%T Arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$
%J Journal of Algebraic Combinatorics
%D 2015
%P 619-633
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a1/
%G en
%F JAC_2015__42_2_a1
Pan, Jiangmin; Huang, Zhaohong; Liu, Zhe. Arc-transitive regular cyclic covers of the complete bipartite graph $\mathsf{K}_{p,p}$. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 2, pp. 619-633. http://geodesic.mathdoc.fr/item/JAC_2015__42_2_a1/