On the Erdhos-ko-Rado property for finite groups
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 111-128.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let a finite group $G$ act transitively on a finite set $X$. A subset $S\subseteq G$ is said to be intersecting if for any $s_1,s_2\in S$, the element $s_1^{-1}s_2$ has a fixed point. The action is said to have the weak Erdős-Ko-Rado (EKR) property, if the cardinality of any intersecting set is at most $\vert G\vert/\vert X\vert$. If, moreover, any maximum intersecting set is a coset of a point stabilizer, the action is said to have the strong EKR property. In this paper, we will investigate the weak and strong EKR property and attempt to classify groups in which all transitive actions have these properties. In particular, we show that a group with the weak EKR property is solvable and that a nilpotent group with the strong EKR property is the direct product of a $2$-group and an abelian group of odd order.
Classification : 05D05, 05E18, 05A05, 20D05, 20D10, 20D15, 20G40
Keywords: classification of finite minimal simple groups, Erdős-Ko-Rado theorem, nilpotent groups, solvable groups, special linear groups
@article{JAC_2015__42_1_a7,
     author = {Bardestani, Mohammad and Mallahi-Karai, Keivan},
     title = {On the {Erdhos-ko-Rado} property for finite groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a7/}
}
TY  - JOUR
AU  - Bardestani, Mohammad
AU  - Mallahi-Karai, Keivan
TI  - On the Erdhos-ko-Rado property for finite groups
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 111
EP  - 128
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a7/
LA  - en
ID  - JAC_2015__42_1_a7
ER  - 
%0 Journal Article
%A Bardestani, Mohammad
%A Mallahi-Karai, Keivan
%T On the Erdhos-ko-Rado property for finite groups
%J Journal of Algebraic Combinatorics
%D 2015
%P 111-128
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a7/
%G en
%F JAC_2015__42_1_a7
Bardestani, Mohammad; Mallahi-Karai, Keivan. On the Erdhos-ko-Rado property for finite groups. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a7/