On products of long cycles: short cycle dependence and separation probabilities
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 183-224.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We present various results on multiplying cycles in the symmetric group. One result is a generalisation of the following theorem of G. Boccara [Discrete Math. 29, 105--134 (1980; Zbl 0444.20003)]: the number of ways of writing an odd permutation in the symmetric group on $n$ symbols as a product of an $n$-cycle and an $(n-1)$-cycle is independent of the permutation chosen. We give a number of different approaches of our generalisation. One partial proof uses an inductive method which we also apply to other problems. In particular, we give a formula for the distribution of the number of cycles over all products of cycles of fixed lengths. Another application is related to the recent notion of separation probabilities for permutations introduced by O. Bernardi et al. [Comb. Probab. Comput. 23, No. 2, 201--222 (2014; Zbl 1290.05003)].
Classification : 05E15, 05C76, 05C38, 05A05, 20B30
Keywords: symmetric group, products of cycles, separation probabilities
@article{JAC_2015__42_1_a4,
     author = {F\'eray, Valentin and Rattan, Amarpreet},
     title = {On products of long cycles: short cycle dependence and separation probabilities},
     journal = {Journal of Algebraic Combinatorics},
     pages = {183--224},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a4/}
}
TY  - JOUR
AU  - Féray, Valentin
AU  - Rattan, Amarpreet
TI  - On products of long cycles: short cycle dependence and separation probabilities
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 183
EP  - 224
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a4/
LA  - en
ID  - JAC_2015__42_1_a4
ER  - 
%0 Journal Article
%A Féray, Valentin
%A Rattan, Amarpreet
%T On products of long cycles: short cycle dependence and separation probabilities
%J Journal of Algebraic Combinatorics
%D 2015
%P 183-224
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a4/
%G en
%F JAC_2015__42_1_a4
Féray, Valentin; Rattan, Amarpreet. On products of long cycles: short cycle dependence and separation probabilities. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 183-224. http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a4/