Hilbert functions of colored quotient rings and a generalization of the clements-lindström theorem
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 1-23.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given a polynomial ring $S=\Bbbk[x_1,\dots,x_n]$ over a field $\Bbbk$, and a monomial ideal $M$ of $S$, we say the quotient ring $R=S/M$ is Macaulay-Lex if for every graded ideal of $R$, there exists a lexicographic ideal of $R$ with the same Hilbert function. In this paper, we introduce a class of quotient rings with combinatorial significance, which we call colored quotient rings. This class of rings include Clements-Lindström rings and colored squarefree rings as special cases that are known to be Macaulay-Lex. We construct two new classes of Macaulay-Lex rings, characterize all colored quotient rings that are Macaulay-Lex, and give a simultaneous generalization of both the Clements-Lindström theorem and the Frankl-Füredi-Kalai theorem. We also show that the $f$-vectors of $(a_1,\dots,a_n)$-colored simplicial complexes or multicomplexes are never characterized by "reverse-lexicographic" complexes or multicomplexes when $n>1$ and $(a_1,\dots,a_n)\neq(1,\dots,1)$.
Classification : 13A02, 13C05, 13D40, 13F55, 05D99, 05E40, 05E45
Keywords: Hilbert function, Macaulay-Lex rings, Kruskal-Katona theorem, Clements-Lindström theorem, $f$-vector, colored complexes
@article{JAC_2015__42_1_a11,
     author = {Chong, Kai Fong Ernest},
     title = {Hilbert functions of colored quotient rings and a generalization of the clements-lindstr\"om theorem},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a11/}
}
TY  - JOUR
AU  - Chong, Kai Fong Ernest
TI  - Hilbert functions of colored quotient rings and a generalization of the clements-lindström theorem
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1
EP  - 23
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a11/
LA  - en
ID  - JAC_2015__42_1_a11
ER  - 
%0 Journal Article
%A Chong, Kai Fong Ernest
%T Hilbert functions of colored quotient rings and a generalization of the clements-lindström theorem
%J Journal of Algebraic Combinatorics
%D 2015
%P 1-23
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a11/
%G en
%F JAC_2015__42_1_a11
Chong, Kai Fong Ernest. Hilbert functions of colored quotient rings and a generalization of the clements-lindström theorem. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a11/