Weighing matrices and spherical codes
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 283-291.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Mutually unbiased weighing matrices (MUWM) are closely related to an antipodal spherical code with 4 angles. In this paper, we clarify the relation between MUWM and the spherical codes and determine the maximum size of a set of MUWM with weight 4 for any order. Moreover, we define mutually quasi-unbiased weighing matrices (MQUWM) as a natural generalization of MUWM from the viewpoint of spherical codes. We determine the maximum size of a set of MQUWM for the parameters $(d,2,4,1)$ and $(d,d,d/2,2d)$. This includes an affirmative answer to the problem of Best, Kharaghani, and Ramp.
Classification : 05B20, 94B25
Keywords: weighing matrices, mutually unbiased weighing matrices, root system, Kerdock codes over $\mathbb Z_4$
@article{JAC_2015__42_1_a1,
     author = {Nozaki, Hiroshi and Suda, Sho},
     title = {Weighing matrices and spherical codes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a1/}
}
TY  - JOUR
AU  - Nozaki, Hiroshi
AU  - Suda, Sho
TI  - Weighing matrices and spherical codes
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 283
EP  - 291
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a1/
LA  - en
ID  - JAC_2015__42_1_a1
ER  - 
%0 Journal Article
%A Nozaki, Hiroshi
%A Suda, Sho
%T Weighing matrices and spherical codes
%J Journal of Algebraic Combinatorics
%D 2015
%P 283-291
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a1/
%G en
%F JAC_2015__42_1_a1
Nozaki, Hiroshi; Suda, Sho. Weighing matrices and spherical codes. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 283-291. http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a1/