The Robinson-Schensted correspondence and $A_2$-web bases
Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 293-329.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study natural bases for two constructions of the irreducible representation of the symmetric group corresponding to $[n,n,n]$: the reduced web basis associated to Kuperberg's combinatorial description of the spider category; and the left cell basis for the left cell construction of Kazhdan and Lusztig. In the case of $[n,n]$, the spider category is the Temperley-Lieb category; reduced webs correspond to planar matchings, which are equivalent to left cell bases. This paper compares the image of these bases under classical maps: the Robinson-Schensted algorithm between permutations and Young tableaux and Khovanov-Kuperberg's bijection between Young tableaux and reduced webs. One main result uses Vogan's generalized $\tau$-invariant to uncover a close structural relationship between the web basis and the left cell basis. Intuitively, generalized $\tau$-invariants refine the data of the inversion set of a permutation. We define generalized $\tau$-invariants intrinsically for Kazhdan-Lusztig left cell basis elements and for webs. We then show that the generalized $\tau$-invariant is preserved by these classical maps. Thus, our result allows one to interpret Khovanov-Kuperberg's bijection as an analogue of the Robinson-Schensted correspondence. Despite all of this, our second main result proves that the reduced web and left cell bases are inequivalent; that is, these bijections are not $S_{3n}$-equivariant maps.
Classification : 05E10, 20B30, 20C30
Keywords: $\frak{sl}(3)$ web basis, Kazhdan-Lusztig basis, tau invariant, Robinson-Schensted correspondence
@article{JAC_2015__42_1_a0,
     author = {Housley, Matthew and Russell, Heather M. and Tymoczko, Julianna},
     title = {The {Robinson-Schensted} correspondence and $A_2$-web bases},
     journal = {Journal of Algebraic Combinatorics},
     pages = {293--329},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a0/}
}
TY  - JOUR
AU  - Housley, Matthew
AU  - Russell, Heather M.
AU  - Tymoczko, Julianna
TI  - The Robinson-Schensted correspondence and $A_2$-web bases
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 293
EP  - 329
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a0/
LA  - en
ID  - JAC_2015__42_1_a0
ER  - 
%0 Journal Article
%A Housley, Matthew
%A Russell, Heather M.
%A Tymoczko, Julianna
%T The Robinson-Schensted correspondence and $A_2$-web bases
%J Journal of Algebraic Combinatorics
%D 2015
%P 293-329
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a0/
%G en
%F JAC_2015__42_1_a0
Housley, Matthew; Russell, Heather M.; Tymoczko, Julianna. The Robinson-Schensted correspondence and $A_2$-web bases. Journal of Algebraic Combinatorics, Tome 42 (2015) no. 1, pp. 293-329. http://geodesic.mathdoc.fr/item/JAC_2015__42_1_a0/