An online version of Rota's basis conjecture
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1001-1012.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Rota's basis conjecture states that in any square array of vectors whose rows are bases of a fixed vector space the vectors can be rearranged within their rows in such a way that afterwards not only the rows are bases, but also the columns. We discuss an online version of this conjecture, in which the permutation used for rearranging the vectors in a given row must be determined without knowledge of the vectors further down the array. The paper contains surprises both for those who believe this online basis conjecture at first glance, and for those who disbelieve it.
Classification : 05B15, 68W27
Keywords: Rota's basis conjecture, exterior algebra, online algorithms
@article{JAC_2015__41_4_a8,
     author = {Bollen, Guus P. and Draisma, Jan},
     title = {An online version of {Rota's} basis conjecture},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1001--1012},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a8/}
}
TY  - JOUR
AU  - Bollen, Guus P.
AU  - Draisma, Jan
TI  - An online version of Rota's basis conjecture
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1001
EP  - 1012
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a8/
LA  - en
ID  - JAC_2015__41_4_a8
ER  - 
%0 Journal Article
%A Bollen, Guus P.
%A Draisma, Jan
%T An online version of Rota's basis conjecture
%J Journal of Algebraic Combinatorics
%D 2015
%P 1001-1012
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a8/
%G en
%F JAC_2015__41_4_a8
Bollen, Guus P.; Draisma, Jan. An online version of Rota's basis conjecture. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1001-1012. http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a8/