The Smith and critical groups of Paley graphs
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1013-1022.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

There is a Paley graph for each prime power $q$ such that $q\equiv 1\pmod 4$. The vertex set is the field ${\mathbb{F}_q}$, and two vertices $x$ and $y$ are joined by an edge if and only if $x-y$ is a nonzero square of ${\mathbb{F}_q}$. We compute the Smith normal forms of the adjacency matrix and Laplacian matrix of a Paley graph.
Classification : 05C25, 05B20, 15A21, 05E30
Keywords: critical group, sandpile group, chip-firing game, strongly regular graph, Paley graph, Smith normal form, Jacobi sums, Laplacian matrix
@article{JAC_2015__41_4_a7,
     author = {Chandler, David B. and Sin, Peter and Xiang, Qing},
     title = {The {Smith} and critical groups of {Paley} graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1013--1022},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a7/}
}
TY  - JOUR
AU  - Chandler, David B.
AU  - Sin, Peter
AU  - Xiang, Qing
TI  - The Smith and critical groups of Paley graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1013
EP  - 1022
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a7/
LA  - en
ID  - JAC_2015__41_4_a7
ER  - 
%0 Journal Article
%A Chandler, David B.
%A Sin, Peter
%A Xiang, Qing
%T The Smith and critical groups of Paley graphs
%J Journal of Algebraic Combinatorics
%D 2015
%P 1013-1022
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a7/
%G en
%F JAC_2015__41_4_a7
Chandler, David B.; Sin, Peter; Xiang, Qing. The Smith and critical groups of Paley graphs. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1013-1022. http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a7/