A graph-dynamical interpretation of Kiselman's semigroups
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1115-1132.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A sequential dynamical system is a quadruple $(\varGamma, S_i,f_i,w)$ consisting of a (directed) graph $\varGamma =(V,E)$, each of whose vertices $i\in V$ is endowed with a finite set state $S_i$ and an update function $f_i: \prod _{j, i \to j} S_j \to S_i$ -- we call this structure an "update system" -- and a word $w$ in the free monoid over $V$, specifying the order in which update functions are to be performed. Each word induces an evolution of the system and, in this paper, we are interested in the dynamics monoid, whose elements are all possible evolutions. When $\varGamma $ is a directed acyclic graph, the dynamics monoid of every update system supported on $\varGamma $ naturally arises as a quotient of the Hecke-Kiselman monoid associated with $\varGamma $. In the special case where $\varGamma = \varGamma _n$ is the complete oriented acyclic graph on $n$ vertices, we exhibit an update system whose dynamics monoid coincides with Kiselman's semigroup ${K}_n$, thus showing that the defining Hecke-Kiselman relations are optimal in this situation. We then speculate on how these results may be extended to the general acyclic case.
Classification : 05E15, 05C25
Keywords: Hecke-Kiselman monoids, sequential dynamical system, update systems
@article{JAC_2015__41_4_a1,
     author = {Collina, Elena and D'Andrea, Alessandro},
     title = {A graph-dynamical interpretation of {Kiselman's} semigroups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1115--1132},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a1/}
}
TY  - JOUR
AU  - Collina, Elena
AU  - D'Andrea, Alessandro
TI  - A graph-dynamical interpretation of Kiselman's semigroups
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1115
EP  - 1132
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a1/
LA  - en
ID  - JAC_2015__41_4_a1
ER  - 
%0 Journal Article
%A Collina, Elena
%A D'Andrea, Alessandro
%T A graph-dynamical interpretation of Kiselman's semigroups
%J Journal of Algebraic Combinatorics
%D 2015
%P 1115-1132
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a1/
%G en
%F JAC_2015__41_4_a1
Collina, Elena; D'Andrea, Alessandro. A graph-dynamical interpretation of Kiselman's semigroups. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1115-1132. http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a1/