Chromatic polynomials of graphs from Kac-Moody algebras
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1133-1142.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give a new interpretation of the chromatic polynomial of a simple graph $G$ in terms of the Kac-Moody Lie algebra $\mathfrak {g}$ with Dynkin diagram $G$. We show that the chromatic polynomial is essentially the $q$-Kostant partition function of $\mathfrak {g}$ evaluated on the sum of the simple roots. Applying the Peterson recurrence formula for root multiplicities of $\mathfrak {g}$, we obtain a new realization of the chromatic polynomial as a weighted sum of paths in the bond lattice of $G$.
Classification : 05C31, 17B10, 17B67, 05C15, 05C38
Keywords: chromatic polynomial, $q$-Kostant partition function, Kac-Moody algebras
@article{JAC_2015__41_4_a0,
     author = {Venkatesh, R. and Viswanath, Sankaran},
     title = {Chromatic polynomials of graphs from {Kac-Moody} algebras},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1133--1142},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a0/}
}
TY  - JOUR
AU  - Venkatesh, R.
AU  - Viswanath, Sankaran
TI  - Chromatic polynomials of graphs from Kac-Moody algebras
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 1133
EP  - 1142
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a0/
LA  - en
ID  - JAC_2015__41_4_a0
ER  - 
%0 Journal Article
%A Venkatesh, R.
%A Viswanath, Sankaran
%T Chromatic polynomials of graphs from Kac-Moody algebras
%J Journal of Algebraic Combinatorics
%D 2015
%P 1133-1142
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a0/
%G en
%F JAC_2015__41_4_a0
Venkatesh, R.; Viswanath, Sankaran. Chromatic polynomials of graphs from Kac-Moody algebras. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 4, pp. 1133-1142. http://geodesic.mathdoc.fr/item/JAC_2015__41_4_a0/