Quasi-symmetric functions as polynomial functions on Young diagrams
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 669-706.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We determine the most general form of a smooth function on Young diagrams, that is, a polynomial in the interlacing or multirectangular coordinates whose value depends only on the shape of the diagram. We prove that the algebra of such functions is isomorphic to quasi-symmetric functions, and give a noncommutative analog of this result.
Classification : 05E05, 05E10
Keywords: quasi-symmetric functions, functions on Young diagrams, evaluation on virtual alphabets
@article{JAC_2015__41_3_a9,
     author = {Aval, Jean-Christophe and F\'eray, Valentin and Novelli, Jean-Christophe and Thibon, Jean-Yves},
     title = {Quasi-symmetric functions as polynomial functions on {Young} diagrams},
     journal = {Journal of Algebraic Combinatorics},
     pages = {669--706},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a9/}
}
TY  - JOUR
AU  - Aval, Jean-Christophe
AU  - Féray, Valentin
AU  - Novelli, Jean-Christophe
AU  - Thibon, Jean-Yves
TI  - Quasi-symmetric functions as polynomial functions on Young diagrams
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 669
EP  - 706
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a9/
LA  - en
ID  - JAC_2015__41_3_a9
ER  - 
%0 Journal Article
%A Aval, Jean-Christophe
%A Féray, Valentin
%A Novelli, Jean-Christophe
%A Thibon, Jean-Yves
%T Quasi-symmetric functions as polynomial functions on Young diagrams
%J Journal of Algebraic Combinatorics
%D 2015
%P 669-706
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a9/
%G en
%F JAC_2015__41_3_a9
Aval, Jean-Christophe; Féray, Valentin; Novelli, Jean-Christophe; Thibon, Jean-Yves. Quasi-symmetric functions as polynomial functions on Young diagrams. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 669-706. http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a9/