Strongly regular graphs with the $7$-vertex condition
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 817-842.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The $t$-vertex condition, for an integer $t\geq 2$, was introduced by M. D. Hestenes and D. G. Higman [SIAM Am. Math. Soc. Proc. 4, 41--160 (1971)] providing a combinatorial invariant defined on edges and non-edges of a graph. Finite rank 3 graphs satisfy the condition for all values of $t$. Moreover, a long-standing conjecture of Klin asserts the existence of an integer $t_0$ such that a graph satisfies the $t_0$-vertex condition if and only if it is a rank 3 graph. We present the first infinite family of non-rank 3 strongly regular graphs satisfying the 7-vertex condition. This implies that the Klin parameter $t_0$ is at least 8. The examples are the point graphs of a certain family of generalized quadrangles.
Classification : 05E30, 05C85
Keywords: strongly regular graph, $t$-vertex condition, generalized quadrangle
@article{JAC_2015__41_3_a4,
     author = {Reichard, Sven},
     title = {Strongly regular graphs with the $7$-vertex condition},
     journal = {Journal of Algebraic Combinatorics},
     pages = {817--842},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a4/}
}
TY  - JOUR
AU  - Reichard, Sven
TI  - Strongly regular graphs with the $7$-vertex condition
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 817
EP  - 842
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a4/
LA  - en
ID  - JAC_2015__41_3_a4
ER  - 
%0 Journal Article
%A Reichard, Sven
%T Strongly regular graphs with the $7$-vertex condition
%J Journal of Algebraic Combinatorics
%D 2015
%P 817-842
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a4/
%G en
%F JAC_2015__41_3_a4
Reichard, Sven. Strongly regular graphs with the $7$-vertex condition. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 817-842. http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a4/