The graphs with all but two eigenvalues equal to $\pm 1$
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 887-897.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We determine all graphs whose adjacency matrices have at most two eigenvalues (multiplicities included) different from $\pm 1$ and decide which of these graphs are determined by their spectrum. This includes the so-called friendship graphs, which consist of a number of edge-disjoint triangles meeting in one vertex. It turns out that the friendship graph is determined by its spectrum, except when the number of triangles equals sixteen.
Classification : 05C50, 05B20
Keywords: adjacency matrix, friendship graph, spectral characterization
@article{JAC_2015__41_3_a1,
     author = {Cioab\u{a}, Sebastian M. and Haemers, Willem H. and Vermette, Jason R. and Wong, Wiseley},
     title = {The graphs with all but two eigenvalues equal to $\pm 1$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {887--897},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a1/}
}
TY  - JOUR
AU  - Cioabă, Sebastian M.
AU  - Haemers, Willem H.
AU  - Vermette, Jason R.
AU  - Wong, Wiseley
TI  - The graphs with all but two eigenvalues equal to $\pm 1$
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 887
EP  - 897
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a1/
LA  - en
ID  - JAC_2015__41_3_a1
ER  - 
%0 Journal Article
%A Cioabă, Sebastian M.
%A Haemers, Willem H.
%A Vermette, Jason R.
%A Wong, Wiseley
%T The graphs with all but two eigenvalues equal to $\pm 1$
%J Journal of Algebraic Combinatorics
%D 2015
%P 887-897
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a1/
%G en
%F JAC_2015__41_3_a1
Cioabă, Sebastian M.; Haemers, Willem H.; Vermette, Jason R.; Wong, Wiseley. The graphs with all but two eigenvalues equal to $\pm 1$. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 887-897. http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a1/