Median eigenvalues of bipartite graphs
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 899-909.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a graph $G$ of order $n$ and with eigenvalues $\lambda_1\geqslant\cdots\geqslant\lambda_n$, the HL-index $R(G)$ is defined as $R(G)=\max\left\{|\lambda_{\lfloor(n+1)/2\rfloor}|,|\lambda_{\lceil (n+1)/2\rceil}|\right\}$. We show that for every connected bipartite graph $G$ with maximum degree $\Delta\geqslant 3$, $R(G)\leqslant\sqrt{\Delta-2}$ unless $G$ is the the incidence graph of a projective plane of order $\Delta-1$. We also present an approach through graph covering to construct infinite families of bipartite graphs with large HL-index.
Classification : 05C50, 05B20, 05C70
Keywords: adjacency matrix, graph eigenvalues, median eigenvalues, covers
@article{JAC_2015__41_3_a0,
     author = {Mohar, Bojan and Tayfeh-Rezaie, Behruz},
     title = {Median eigenvalues of bipartite graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {899--909},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a0/}
}
TY  - JOUR
AU  - Mohar, Bojan
AU  - Tayfeh-Rezaie, Behruz
TI  - Median eigenvalues of bipartite graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 899
EP  - 909
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a0/
LA  - en
ID  - JAC_2015__41_3_a0
ER  - 
%0 Journal Article
%A Mohar, Bojan
%A Tayfeh-Rezaie, Behruz
%T Median eigenvalues of bipartite graphs
%J Journal of Algebraic Combinatorics
%D 2015
%P 899-909
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a0/
%G en
%F JAC_2015__41_3_a0
Mohar, Bojan; Tayfeh-Rezaie, Behruz. Median eigenvalues of bipartite graphs. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 3, pp. 899-909. http://geodesic.mathdoc.fr/item/JAC_2015__41_3_a0/