A classification of semisymmetric graphs of order $2p^3$: unfaithful case
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 275-302.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive, but not vertex-transitive. Every semisymmetric graph is a bipartite graph with two biparts of equal size. It was proved by J. Folkman [J. Comb. Theory 3, 215--232 (1967; Zbl 0158.42501)] that there exist no semisymmetric graphs of order $2p$ and $2p^2$, where $p$ is a prime. For any distinct primes $p$ and $q$, the classification of semisymmetric graphs of order $2pq$ was given by S. F. Du and M. Y. Xu [Commun. Algebra 28, No. 6, 2685--2715 (2000; Zbl 0944.05051)]. Naturally, one of our long-term goals is to determine all the semisymmetric graphs of order $2p^3$, for any prime $p$. All these graphs $\Gamma $ are divided into two subclasses: (I) the automorphism group Aut $\Gamma$ acts unfaithfully on at least one bipart; and (II) Aut $(\Gamma )$ acts faithfully on both biparts. In L. Wang and S. F. Du [Eur. J. Comb. 36, 393--405 (2014; Zbl 1284.05116)], a group theoretical characterization for Subclass (I) was given by the authors. Based on this characterization, this paper gives a complete classification for Subclass (I).
Classification : 05C25
Keywords: permutation group, vertex-transitive graph, semisymmetric graph
@article{JAC_2015__41_2_a9,
     author = {Du, Shaofei and Wang, Li},
     title = {A classification of semisymmetric graphs of order $2p^3$: unfaithful case},
     journal = {Journal of Algebraic Combinatorics},
     pages = {275--302},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a9/}
}
TY  - JOUR
AU  - Du, Shaofei
AU  - Wang, Li
TI  - A classification of semisymmetric graphs of order $2p^3$: unfaithful case
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 275
EP  - 302
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a9/
LA  - en
ID  - JAC_2015__41_2_a9
ER  - 
%0 Journal Article
%A Du, Shaofei
%A Wang, Li
%T A classification of semisymmetric graphs of order $2p^3$: unfaithful case
%J Journal of Algebraic Combinatorics
%D 2015
%P 275-302
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a9/
%G en
%F JAC_2015__41_2_a9
Du, Shaofei; Wang, Li. A classification of semisymmetric graphs of order $2p^3$: unfaithful case. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 275-302. http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a9/