On $q$-symmetric functions and $q$-quasisymmetric functions
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 323-364.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we construct the $q$-analogue of Poirier-Reutenauer algebras, related deeply with other $q$-combinatorial Hopf algebras. As an application, we use them to realize the odd Schur functions defined by A. P. Ellis et al. [Int. Math. Res. Not. 2014, No. 4, 991--1062 (2014; Zbl 1356.20004)], then naturally obtain the odd Littlewood-Richardson rule concerned by A. P. Ellis [J. Algebr. Comb. 37, No. 4, 777--799 (2013; Zbl 1268.05229)]. Moreover, we construct the refinement of the odd Schur functions, called odd quasisymmetric Schur functions, parallel to the consideration by J. Haglund et al. [J. Comb. Theory, Ser. A 118, No. 2, 463--490 (2011; Zbl 1229.05270)]. All the $q$-Hopf algebras we discuss here provide the corresponding $q$-dual graded graphs.
Classification : 05E05, 05A30, 05E15
Keywords: $q$-Hopf algebra, odd quasisymmetric Schur function, Littlewood-Richardson rule
@article{JAC_2015__41_2_a7,
     author = {Li, Yunnan},
     title = {On $q$-symmetric functions and $q$-quasisymmetric functions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {323--364},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a7/}
}
TY  - JOUR
AU  - Li, Yunnan
TI  - On $q$-symmetric functions and $q$-quasisymmetric functions
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 323
EP  - 364
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a7/
LA  - en
ID  - JAC_2015__41_2_a7
ER  - 
%0 Journal Article
%A Li, Yunnan
%T On $q$-symmetric functions and $q$-quasisymmetric functions
%J Journal of Algebraic Combinatorics
%D 2015
%P 323-364
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a7/
%G en
%F JAC_2015__41_2_a7
Li, Yunnan. On $q$-symmetric functions and $q$-quasisymmetric functions. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 323-364. http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a7/