Monk's rule and Giambelli's formula for Peterson varieties of all Lie types
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 539-575.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A Peterson variety is a subvariety of the flag variety $G/B$ which appears in the construction of the quantum cohomology of partial flag varieties. Each Peterson variety has a one-dimensional torus $S^1$ acting on it. We give a basis of Peterson Schubert classes for $H_{S^1}^*(Pet)$ and identify the ring generators. In type $A$, Harada-Tymoczko gave a positive Monk formula (arXiv:0908.3517, 2009), and Bayegan-Harada gave Giambelli's formula (arXiv:1012.4053, 2010) for multiplication in the cohomology ring. This paper gives Monk's rule and Giambelli's formula for all Lie types.
Classification : 14N15, 55N91, 14M15
Keywords: Peterson variety, equivariant cohomology, Monk's rule, Giambelli's formula, Schubert calculus
@article{JAC_2015__41_2_a1,
     author = {Drellich, Elizabeth},
     title = {Monk's rule and {Giambelli's} formula for {Peterson} varieties of all {Lie} types},
     journal = {Journal of Algebraic Combinatorics},
     pages = {539--575},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a1/}
}
TY  - JOUR
AU  - Drellich, Elizabeth
TI  - Monk's rule and Giambelli's formula for Peterson varieties of all Lie types
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 539
EP  - 575
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a1/
LA  - en
ID  - JAC_2015__41_2_a1
ER  - 
%0 Journal Article
%A Drellich, Elizabeth
%T Monk's rule and Giambelli's formula for Peterson varieties of all Lie types
%J Journal of Algebraic Combinatorics
%D 2015
%P 539-575
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a1/
%G en
%F JAC_2015__41_2_a1
Drellich, Elizabeth. Monk's rule and Giambelli's formula for Peterson varieties of all Lie types. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 2, pp. 539-575. http://geodesic.mathdoc.fr/item/JAC_2015__41_2_a1/