Root polytope and partitions
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 49-71.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given a crystallographic reduced root system and an element $\gamma $ of the lattice generated by the roots, we study the minimum number $|\gamma |$, called the length of $\gamma $, of roots needed to express $\gamma $ as sum of roots. This number is related to the linear functionals presenting the convex hull of the roots. The map $\gamma \longmapsto |\gamma |$ turns out to be the upper integral part of a piecewise-linear function with linearity domains the cones over the facets of this convex hull. In order to show this relation, we investigate the integral closure of the monoid generated by the roots in a facet. We study also the positive length, i.e., the minimum number of positive roots needed to write an element, and we prove that the two notions of length coincide only for the types $\mathbf{\mathsf {A}}_\ell $ and $\mathbf{\mathsf{C}}_\ell $.
Classification : 05E45, 17B22, 52B20
Keywords: root polytope, root system, vector partition function
@article{JAC_2015__41_1_a7,
     author = {Chiriv{\`\i}, Rocco},
     title = {Root polytope and partitions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a7/}
}
TY  - JOUR
AU  - Chirivì, Rocco
TI  - Root polytope and partitions
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 49
EP  - 71
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a7/
LA  - en
ID  - JAC_2015__41_1_a7
ER  - 
%0 Journal Article
%A Chirivì, Rocco
%T Root polytope and partitions
%J Journal of Algebraic Combinatorics
%D 2015
%P 49-71
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a7/
%G en
%F JAC_2015__41_1_a7
Chirivì, Rocco. Root polytope and partitions. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 49-71. http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a7/