Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 83-108.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Orthogonal spreads in orthogonal spaces of type $V^+(2n+2,2)$ produce large numbers of rank $n$ dual hyperovals in orthogonal spaces of type $V^+(2n,2)$. The construction resembles the method for obtaining symplectic spreads in $V(2n,q)$ from orthogonal spreads in $V^+(2n+2,q)$ when $q$ is even.
Classification : 51E21
Keywords: orthogonal dual hyperoval, symplectic spread, orthogonal spread
@article{JAC_2015__41_1_a5,
     author = {Dempwolff, Ulrich and Kantor, William M.},
     title = {Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads},
     journal = {Journal of Algebraic Combinatorics},
     pages = {83--108},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a5/}
}
TY  - JOUR
AU  - Dempwolff, Ulrich
AU  - Kantor, William M.
TI  - Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 83
EP  - 108
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a5/
LA  - en
ID  - JAC_2015__41_1_a5
ER  - 
%0 Journal Article
%A Dempwolff, Ulrich
%A Kantor, William M.
%T Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads
%J Journal of Algebraic Combinatorics
%D 2015
%P 83-108
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a5/
%G en
%F JAC_2015__41_1_a5
Dempwolff, Ulrich; Kantor, William M. Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 83-108. http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a5/