Permutonestohedra
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 125-155.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

There are several real spherical models associated with a root arrangement, depending on the choice of a building set. The connected components of these models are manifolds with corners which can be glued together to obtain the corresponding real De Concini-Procesi models. In this paper, starting from any root system $\Phi$ with finite Coxeter group $W$ and any $W$-invariant building set, we describe an explicit realization of the real spherical model as a union of polytopes (nestohedra) that lie inside the chambers of the arrangement. The main point of this realization is that the convex hull of these nestohedra is a larger polytope, a permutonestohedron, equipped with an action of $W$ or also, depending on the building set, of $\mathrm{Aut}(\Phi)$. The permutonestohedra are natural generalizations of Kapranov's permutoassociahedra.
Classification : 52B05, 20F55
Keywords: models of arrangements, Coxeter groups, nestohedra
@article{JAC_2015__41_1_a3,
     author = {Gaiffi, Giovanni},
     title = {Permutonestohedra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {125--155},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a3/}
}
TY  - JOUR
AU  - Gaiffi, Giovanni
TI  - Permutonestohedra
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 125
EP  - 155
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a3/
LA  - en
ID  - JAC_2015__41_1_a3
ER  - 
%0 Journal Article
%A Gaiffi, Giovanni
%T Permutonestohedra
%J Journal of Algebraic Combinatorics
%D 2015
%P 125-155
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a3/
%G en
%F JAC_2015__41_1_a3
Gaiffi, Giovanni. Permutonestohedra. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 125-155. http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a3/