Every 3-equivalenced association scheme is Frobenius
Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 217-228.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a positive integer $k$ we say that an association scheme with more than one point is $k$-equivalenced if each non-diagonal relation has valency $k$. In this paper we prove that every 3-equivalenced association scheme is Frobenius, that is, the set of relations coincides with the set of orbitals of a Frobenius group.
Classification : 05E30
Keywords: association schemes, 3-equivalenced, Frobenius
@article{JAC_2015__41_1_a0,
     author = {Hirasaka, Mitsugu and Kim, Kyoung-Tark and Park, Jeong Rye},
     title = {Every 3-equivalenced association scheme is {Frobenius}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a0/}
}
TY  - JOUR
AU  - Hirasaka, Mitsugu
AU  - Kim, Kyoung-Tark
AU  - Park, Jeong Rye
TI  - Every 3-equivalenced association scheme is Frobenius
JO  - Journal of Algebraic Combinatorics
PY  - 2015
SP  - 217
EP  - 228
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a0/
LA  - en
ID  - JAC_2015__41_1_a0
ER  - 
%0 Journal Article
%A Hirasaka, Mitsugu
%A Kim, Kyoung-Tark
%A Park, Jeong Rye
%T Every 3-equivalenced association scheme is Frobenius
%J Journal of Algebraic Combinatorics
%D 2015
%P 217-228
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a0/
%G en
%F JAC_2015__41_1_a0
Hirasaka, Mitsugu; Kim, Kyoung-Tark; Park, Jeong Rye. Every 3-equivalenced association scheme is Frobenius. Journal of Algebraic Combinatorics, Tome 41 (2015) no. 1, pp. 217-228. http://geodesic.mathdoc.fr/item/JAC_2015__41_1_a0/