On circulant thin Lehman matrices
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 939-959.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The class of Lehman matrices is a key structure of characterization of minimally non-ideal clutters. The notion of 1-overlapped factorizations of cyclic groups produces an infinite family of circulant thin Lehman matrices. In this paper, we prove essential properties of the 1-overlapped factorizations of cyclic groups and completely determine the shapes of circulant thin Lehman matrices with small constant line sum, which solves the ideal counterpart of the so-called Grinstead's conjecture for the circulant partitionable graphs in this case.
Classification : 05B20, 05C50
Keywords: thin Lehmann matrix, 1-overlapped factorization, cyclic group
@article{JAC_2014__40_4_a8,
     author = {Sakuma, Tadashi and Shinohara, Hidehiro},
     title = {On circulant thin {Lehman} matrices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {939--959},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a8/}
}
TY  - JOUR
AU  - Sakuma, Tadashi
AU  - Shinohara, Hidehiro
TI  - On circulant thin Lehman matrices
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 939
EP  - 959
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a8/
LA  - en
ID  - JAC_2014__40_4_a8
ER  - 
%0 Journal Article
%A Sakuma, Tadashi
%A Shinohara, Hidehiro
%T On circulant thin Lehman matrices
%J Journal of Algebraic Combinatorics
%D 2014
%P 939-959
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a8/
%G en
%F JAC_2014__40_4_a8
Sakuma, Tadashi; Shinohara, Hidehiro. On circulant thin Lehman matrices. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 939-959. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a8/