Semiregular automorphisms of edge-transitive graphs
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 961-972.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The polycirculant conjecture asserts that every vertex-transitive digraph has a semiregular automorphism: a non-trivial automorphism whose cycles all have the same length. In this paper, we investigate the existence of semiregular automorphisms of edge-transitive graphs. In particular, we show that any regular edge-transitive graph of valency three or four has a semiregular automorphism.
Classification : 05C20, 05C60, 05C25
Keywords: edge-transitive graphs, semiregular automorphism, polycirculant conjecture
@article{JAC_2014__40_4_a7,
     author = {Giudici, Michael and Poto\v{c}nik, Primo\v{z} and Verret, Gabriel},
     title = {Semiregular automorphisms of edge-transitive graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {961--972},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a7/}
}
TY  - JOUR
AU  - Giudici, Michael
AU  - Potočnik, Primož
AU  - Verret, Gabriel
TI  - Semiregular automorphisms of edge-transitive graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 961
EP  - 972
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a7/
LA  - en
ID  - JAC_2014__40_4_a7
ER  - 
%0 Journal Article
%A Giudici, Michael
%A Potočnik, Primož
%A Verret, Gabriel
%T Semiregular automorphisms of edge-transitive graphs
%J Journal of Algebraic Combinatorics
%D 2014
%P 961-972
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a7/
%G en
%F JAC_2014__40_4_a7
Giudici, Michael; Potočnik, Primož; Verret, Gabriel. Semiregular automorphisms of edge-transitive graphs. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 961-972. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a7/