Vertex transitive graphs from injective linear mappings
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 983-999.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Based on a motivation coming from the study of the metric structure of the category of finite dimensional vector spaces over a finite field $\mathbb F$, we examine a family of graphs, defined for each pair of integers $1\leq k\leq n$, with vertex set formed by all injective linear transformations $\mathbb F^k\to\mathbb F^n$ and edges corresponding to pairs of mappings, $f$ and $g$, with $\lambda(f,g)=\dim\mathrm{Im}(f-g)=1$. For $\mathbb F\cong\mathrm{GF}(q)$, this graph will be denoted by $\mathrm{INJ}_q(k,n)$. We show that all such graphs are vertex transitive and Hamiltonian and describe the full automorphism group of each $\mathrm{INJ}_q(k,n)$ for $k$. Using the properties of line-transitive groups, we completely determine which of the graphs $\mathrm{INJ }_q(k,n)$ are Cayley and which are not. The Cayley ones consist of three infinite families, corresponding to pairs $(1,n)$, $(n-1,n)$, and $(n,n)$, with $n$ and $q$ arbitrary, and of two sporadic examples $\mathrm{INJ}_2(2,5)$ and $\mathrm{INJ}_2(3,5)$. Hence, the overwhelming majority of our graphs is not Cayley.
Classification : 05C25, 05C60
Keywords: vertex transitive graphs, Cayley graphs, linear mappings
@article{JAC_2014__40_4_a5,
     author = {Ma\v{c}aj, Martin},
     title = {Vertex transitive graphs from injective linear mappings},
     journal = {Journal of Algebraic Combinatorics},
     pages = {983--999},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a5/}
}
TY  - JOUR
AU  - Mačaj, Martin
TI  - Vertex transitive graphs from injective linear mappings
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 983
EP  - 999
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a5/
LA  - en
ID  - JAC_2014__40_4_a5
ER  - 
%0 Journal Article
%A Mačaj, Martin
%T Vertex transitive graphs from injective linear mappings
%J Journal of Algebraic Combinatorics
%D 2014
%P 983-999
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a5/
%G en
%F JAC_2014__40_4_a5
Mačaj, Martin. Vertex transitive graphs from injective linear mappings. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 983-999. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a5/