Young walls and graded dimension formulas for finite quiver Hecke algebras of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 1077-1102.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study graded dimension formulas for finite quiver Hecke algebras $R^{\Lambda_0}(\beta)$ of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$ using combinatorics of Young walls. We introduce the notion of standard tableaux for proper Young walls and show that the standard tableaux form a graded poset with lattice structure. We next investigate Laurent polynomials associated with proper Young walls and their standard tableaux arising from the Fock space representations consisting of proper Young walls. Then, we prove the graded dimension formulas described in terms of the Laurent polynomials. When evaluating at $q=1$, the graded dimension formulas recover the dimension formulas for $R^{\Lambda_0}(\beta)$ described in terms of standard tableaux of strict partitions.
Classification : 05E10, 20C08
Keywords: Fock space representations, graded dimension formulas, quiver Hecke algebras, standard tableaux, Young walls
@article{JAC_2014__40_4_a3,
     author = {Oh, Se-Jin and Park, Euiyong},
     title = {Young walls and graded dimension formulas for finite quiver {Hecke} algebras of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1077--1102},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a3/}
}
TY  - JOUR
AU  - Oh, Se-Jin
AU  - Park, Euiyong
TI  - Young walls and graded dimension formulas for finite quiver Hecke algebras of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 1077
EP  - 1102
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a3/
LA  - en
ID  - JAC_2014__40_4_a3
ER  - 
%0 Journal Article
%A Oh, Se-Jin
%A Park, Euiyong
%T Young walls and graded dimension formulas for finite quiver Hecke algebras of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$
%J Journal of Algebraic Combinatorics
%D 2014
%P 1077-1102
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a3/
%G en
%F JAC_2014__40_4_a3
Oh, Se-Jin; Park, Euiyong. Young walls and graded dimension formulas for finite quiver Hecke algebras of type $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 1077-1102. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a3/