Uncertainty principles and sum complexes
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 887-902.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $p$ be a prime and let $A$ be a nonempty subset of the cyclic group $C_p$. For a field $\mathbb F$ and an element $f$ in the group algebra $\mathbb F[C_p]$ let $T_f$ be the endomorphism of $\mathbb F[C_p]$ given by $T_f(g)=fg$. The uncertainty number $u_{\mathbb F}(A)$ is the minimal rank of $T_f$ over all nonzero $f\in\mathbb F[C_p]$ such that $\mathrm{supp}(f)\subset A$. The following topological characterization of uncertainty numbers is established. For $1\leq k\leq p$ define the sum complex $X_{A,k}$ as the $(k-1)$-dimensional complex on the vertex set $C_p$ with a full $(k-2)$-skeleton whose $(k-1)$-faces are all $\sigma\subset C_p$ such that $|\sigma|=k$ and $\prod _{x\in\sigma}x\in A$. It is shown that if $\mathbb F$ is algebraically closed then $$ u_{\mathbb F}(A)=p-\max\{k:\tilde H_{k-1}(X_{A,k};\mathbb F)\neq 0\}.$$ The main ingredient in the proof is the determination of the homology groups of $X_{A,k}$ with field coefficients. In particular it is shown that if $|A|\leq k$ then $\tilde H_{k-1}(X_{A,k}\mathbb F_p)=0$.
Classification : 05E10, 05E45, 05C05, 55U10, 20C05
Keywords: uncertainty principle, simplicial homology
@article{JAC_2014__40_4_a10,
     author = {Meshulam, Roy},
     title = {Uncertainty principles and sum complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {887--902},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a10/}
}
TY  - JOUR
AU  - Meshulam, Roy
TI  - Uncertainty principles and sum complexes
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 887
EP  - 902
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a10/
LA  - en
ID  - JAC_2014__40_4_a10
ER  - 
%0 Journal Article
%A Meshulam, Roy
%T Uncertainty principles and sum complexes
%J Journal of Algebraic Combinatorics
%D 2014
%P 887-902
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a10/
%G en
%F JAC_2014__40_4_a10
Meshulam, Roy. Uncertainty principles and sum complexes. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 887-902. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a10/