On finite self-complementary metacirculants
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 1135-1144.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the automorphism group of a self-complementary metacirculant is either soluble or has $\mathrm A_5$ as the only insoluble composition factor, extending a result of C. H. Li and C. E. Praeger [J. Algebra 349, No. 1, 117--127 (2012; Zbl 1257.20002)] which says the automorphism group of a self-complementary circulant is soluble. The proof involves a construction of self-complementary metacirculants which are Cayley graphs and have insoluble automorphism groups. To the best of our knowledge, these are the first examples of self-complementary graphs with this property.
Classification : 05C25, 20B05, 20B10
Keywords: self-complementary, vertex-transitive, metacirculants
@article{JAC_2014__40_4_a0,
     author = {Li, Cai Heng and Rao, Guang and Song, Shu Jiao},
     title = {On finite self-complementary metacirculants},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1135--1144},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a0/}
}
TY  - JOUR
AU  - Li, Cai Heng
AU  - Rao, Guang
AU  - Song, Shu Jiao
TI  - On finite self-complementary metacirculants
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 1135
EP  - 1144
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a0/
LA  - en
ID  - JAC_2014__40_4_a0
ER  - 
%0 Journal Article
%A Li, Cai Heng
%A Rao, Guang
%A Song, Shu Jiao
%T On finite self-complementary metacirculants
%J Journal of Algebraic Combinatorics
%D 2014
%P 1135-1144
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a0/
%G en
%F JAC_2014__40_4_a0
Li, Cai Heng; Rao, Guang; Song, Shu Jiao. On finite self-complementary metacirculants. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 4, pp. 1135-1144. http://geodesic.mathdoc.fr/item/JAC_2014__40_4_a0/