Reflection factorizations of Singer cycles
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 663-691.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The number of shortest factorizations into reflections for a Singer cycle in $\mathrm{GL}_n(\mathbb F_q)$ is shown to be $(q^n-1)^{n-1}$. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given. The method is a standard character-theory technique, requiring the compilation of irreducible character values for Singer cycles, semisimple reflections, and transvections. The results suggest several open problems and questions, which are discussed at the end.
Classification : 05E10, 05E15, 05C70, 20B30
Keywords: Singer cycle, reflection, transvection, factorization
@article{JAC_2014__40_3_a9,
     author = {Lewis, J.B. and Reiner, V. and Stanton, D.},
     title = {Reflection factorizations of {Singer} cycles},
     journal = {Journal of Algebraic Combinatorics},
     pages = {663--691},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a9/}
}
TY  - JOUR
AU  - Lewis, J.B.
AU  - Reiner, V.
AU  - Stanton, D.
TI  - Reflection factorizations of Singer cycles
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 663
EP  - 691
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a9/
LA  - en
ID  - JAC_2014__40_3_a9
ER  - 
%0 Journal Article
%A Lewis, J.B.
%A Reiner, V.
%A Stanton, D.
%T Reflection factorizations of Singer cycles
%J Journal of Algebraic Combinatorics
%D 2014
%P 663-691
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a9/
%G en
%F JAC_2014__40_3_a9
Lewis, J.B.; Reiner, V.; Stanton, D. Reflection factorizations of Singer cycles. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 663-691. http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a9/