Truncated Quillen complexes of $p$-groups
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 771-784.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $p$ be an odd prime and let $P$ be a $p$-group. We examine the order complex of the poset of elementary abelian subgroups of $P$ having order at least $p^2$. Bouc and Thévenaz showed that this complex has the homotopy type of a wedge of spheres. We show that, for each nonnegative integer $l$, the number of spheres of dimension $l$ in this wedge is controlled by the number of extraspecial subgroups $X$ of $P$ having order $p^{2l+3}$ and satisfying $\Omega_1(C_P(X))=Z(X)$. We go on to provide a negative answer to a question raised by Bouc and Thévenaz concerning restrictions on the homology groups of the given complex.
Classification : 55U10, 20D15, 20D30, 55P10
Keywords: Quillen complex, $p$-group, homology, order complex
@article{JAC_2014__40_3_a5,
     author = {Fumagalli, Francesco and Shareshian, John},
     title = {Truncated {Quillen} complexes of $p$-groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {771--784},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a5/}
}
TY  - JOUR
AU  - Fumagalli, Francesco
AU  - Shareshian, John
TI  - Truncated Quillen complexes of $p$-groups
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 771
EP  - 784
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a5/
LA  - en
ID  - JAC_2014__40_3_a5
ER  - 
%0 Journal Article
%A Fumagalli, Francesco
%A Shareshian, John
%T Truncated Quillen complexes of $p$-groups
%J Journal of Algebraic Combinatorics
%D 2014
%P 771-784
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a5/
%G en
%F JAC_2014__40_3_a5
Fumagalli, Francesco; Shareshian, John. Truncated Quillen complexes of $p$-groups. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 771-784. http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a5/