The Brill-Noether rank of a tropical curve
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 841-860.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We construct a space classifying divisor classes of a fixed degree on all tropical curves of a fixed combinatorial type and show that the function taking a divisor class to its rank is upper semicontinuous. We extend the definition of the Brill-Noether rank of a metric graph to tropical curves and use the upper semicontinuity of the rank function on divisors to show that the Brill-Noether rank varies upper semicontinuously in families of tropical curves. Furthermore, we present a specialization lemma relating the Brill-Noether rank of a tropical curve with the dimension of the Brill-Noether locus of an algebraic curve.
Classification : 14T05
Keywords: tropical curves, divisors, linear systems
@article{JAC_2014__40_3_a1,
     author = {Len, Yoav},
     title = {The {Brill-Noether} rank of a tropical curve},
     journal = {Journal of Algebraic Combinatorics},
     pages = {841--860},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a1/}
}
TY  - JOUR
AU  - Len, Yoav
TI  - The Brill-Noether rank of a tropical curve
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 841
EP  - 860
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a1/
LA  - en
ID  - JAC_2014__40_3_a1
ER  - 
%0 Journal Article
%A Len, Yoav
%T The Brill-Noether rank of a tropical curve
%J Journal of Algebraic Combinatorics
%D 2014
%P 841-860
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a1/
%G en
%F JAC_2014__40_3_a1
Len, Yoav. The Brill-Noether rank of a tropical curve. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 841-860. http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a1/