Conformal blocks, Berenstein-Zelevinsky triangles, and group-based models
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 861-886.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Work of Buczyńska, Wiśniewski, Sturmfels and Xu, and the second author has linked the group-based phylogenetic statistical model associated with the group $\mathbb Z/2\mathbb Z$ with the Wess-Zumino-Witten (WZW) model of conformal field theory associated to $\mathrm{SL}_2(\mathbb C)$. In this article we explain how this connection can be generalized to establish a relationship between the phylogenetic statistical model for the cyclic group $\mathbb Z/m\mathbb Z$ and the WZW model for the special linear group $\mathrm{SL}_m(\mathbb C)$. We use this relationship to also show how a combinatorial device from representation theory, the Berenstein-Zelevinsky triangle, corresponds to elements in the affine semigroup algebra of the $\mathbb Z/3\mathbb Z$ phylogenetic statistical model.
Classification : 14H10, 14D06, 17B10, 20G05
Keywords: conformal blocks, phylogenetics, semigroup algebras
@article{JAC_2014__40_3_a0,
     author = {Kubjas, Kaie and Manon, Christopher},
     title = {Conformal blocks, {Berenstein-Zelevinsky} triangles, and group-based models},
     journal = {Journal of Algebraic Combinatorics},
     pages = {861--886},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a0/}
}
TY  - JOUR
AU  - Kubjas, Kaie
AU  - Manon, Christopher
TI  - Conformal blocks, Berenstein-Zelevinsky triangles, and group-based models
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 861
EP  - 886
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a0/
LA  - en
ID  - JAC_2014__40_3_a0
ER  - 
%0 Journal Article
%A Kubjas, Kaie
%A Manon, Christopher
%T Conformal blocks, Berenstein-Zelevinsky triangles, and group-based models
%J Journal of Algebraic Combinatorics
%D 2014
%P 861-886
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a0/
%G en
%F JAC_2014__40_3_a0
Kubjas, Kaie; Manon, Christopher. Conformal blocks, Berenstein-Zelevinsky triangles, and group-based models. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 3, pp. 861-886. http://geodesic.mathdoc.fr/item/JAC_2014__40_3_a0/