Quiver polynomials in iterated residue form
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 527-542.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Degeneracy loci polynomials for quiver representations generalize several important polynomials in algebraic combinatorics. In this paper we give a nonconventional generating sequence description of these polynomials when the quiver is of Dynkin type.
Classification : 14F43, 14J60, 16G20, 14C17, 32S20, 14M15
Keywords: quivers, quiver varieties, quiver representations, quiver polynomials, Thom polynomials, simply laced Dynkin graphs, degeneracy loci, Schur polynomials
@article{JAC_2014__40_2_a3,
     author = {Rim\'anyi, R.},
     title = {Quiver polynomials in iterated residue form},
     journal = {Journal of Algebraic Combinatorics},
     pages = {527--542},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a3/}
}
TY  - JOUR
AU  - Rimányi, R.
TI  - Quiver polynomials in iterated residue form
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 527
EP  - 542
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a3/
LA  - en
ID  - JAC_2014__40_2_a3
ER  - 
%0 Journal Article
%A Rimányi, R.
%T Quiver polynomials in iterated residue form
%J Journal of Algebraic Combinatorics
%D 2014
%P 527-542
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a3/
%G en
%F JAC_2014__40_2_a3
Rimányi, R. Quiver polynomials in iterated residue form. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 527-542. http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a3/